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Stability of quantum motion: Beyond Fermi-golden-rule and Lyapunov decay
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We study, analytically and numerically, the stability of quantum motion for a classically chaotic system. We
show the existence of different regimes of fidelity decay. In particular, when the underlying classical dynamics
is weakly chaotic, deviations from Fermi-golden-rule and Lyapounov regimes are observed and discussed.
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The nature of correlations decay is an important subjec
different fields of physics. In particular, after the discovery
the so-called dynamical chaos, a large effort has been
voted to understand their behavior in relation to dynami
properties. The main reason is to know the precise condit
under which a statistical description is legitimate and to
timate the nature of the approximations which are involv

Another important characteristic of dynamical systems
the stability of their solutions under slight variation of th
Hamiltonian. A quantitative measure of this stability is giv
by the so-called fidelity or quantum Loschmidt echo. T
fidelity M (t)5um(t)u2 measures the overlap of two stat
started from the same initial state and evolved under slig
different HamiltoniansH0 andH5H01eV, which are clas-
sically chaotic,

m~ t !5^C0uexp~ iHt /\!exp~2 iH 0t/\!uC0&. ~1!

Quite surprisingly, in spite of its physical relevance, t
behavior of fidelity has been scarcely considered and o
recently, in connection with quantum computation, a la
number of papers appeared. Some important features o
delity are now understood even though we are still far fr
the detailed level of knowledge we have about related qu
tities such as correlations functions and escape probabili
So far, above the perturbative regime of smalle, with
Gaussian-type decay@1–3#, two main types of exponentia
decay of the fidelity have been identified:~i! The Fermi-
golden-rule~FGR! decay, with the exponent given by th
half-width of the corresponding local spectral density
states@3–6# ~this decay has been related to the decay
autocorrelation function! @9#; ~ii ! the Lyapunov regime,
above the FGR regime, with decay rate given by
Lyapunov exponent of the underlying classical dynam
@4,7–15#.

In this paper we show that for classically chaotic system
in particular those with weak chaos, the behavior of fide
can be much more rich and complex than expected. In
ticular we study perturbation borders which separate dif
ent types of decay.

We start by displaying numerical results which strong
deviate from the expected behavior. We consider here
1063-651X/2004/69~2!/025201~4!/$22.50 69 0252
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simple, well-known, sawtooth map model@12#. The classical
map writes

p̄5p1K0~u2p!, ū5u1 p̄ ~mod2p!. ~2!

For K0.0, the motion is completely chaotic, with Lyapuno
exponentl5 ln$(21K01@(21K0)

224#1/2)/2%. The quantum
evolution on one map iteration is described by

c̄5U0c[exp@2 i p̂2/~2\!#exp@ ik0~ û2p!2/2#c, ~3!

where p̂52 i\]/]u and k05K0 /\, with the effective
Planck constant\52p/N andN being the dimension of the
Hilbert space. For the perturbed system,K5K01e and k
5k01s, wheres5e/\ ande!K0.

In Fig. 1 we show the fidelity decay in the expected FG
regime 1/AN&s&1. In spite of the fact that the classica
motion is chaotic, it is clearly seen that the behavior does
obey the FGR which, according to Refs.@4,12#, should be
}exp(2Gt) with G'2.2s2. The same conclusion can b
drawn from Fig. 2 where we plot the decay rateg of the
fidelity as a function ofs. Indeed atK050.4 the decay rate
g versuss appears quite different from the quadratic o
@16#.

Deviations are present even atK051, and only atK0
52 one has good FGR decay. Moreover, above the F
regime, where one expects Lyapunov decay, there are st
oscillations above and below the decay ratel ~for K051 and
2!. Only at largers values, one enters the Lyapunov regim

In order to explain the above numerical results, we s
from the standard semiclassical approach@7,14#. For simplic-
ity, we consider a finite configuration space, with dimens
d and volumeV5*dr . The momentum space is also finit
with a volumeVp . In the semiclassical approach, an initi
statec0(r0) is propagated by the semiclassical Van Vleck
Gutzwiller propagator, c(r ;t)5*dr0Ksc(r ,r0 ;t)c0(r0),
whereKsc(r ,r0 ;t)5(sKs(r ,r0 ;t), with

Ks~r ,r0 ;t !5
Cs

1/2

~2p i\!d/2
expF i

\
Ss~r ,r0 ;t !2

ip

2
msG . ~4!

The label s in Eq. ~4! @more exactlys(r ,r0 ;t)] indicates
classical trajectories starting atr0 and ending atr in a timet;
Ss(r ,r0 ;t) is the time integral of the Lagrangian along th
©2004 The American Physical Society01-1
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trajectory s, Ss(r ,r0 ;t)5*0
t dt8L, Cs5udet(]2Ss /]r 0i]r j )u,

andms is the Maslov index counting the conjugate points
In Ref. @14#, it is shown that the semiclassical approxim

tion to m(t) for initial Gaussian wave packets has a simp
and convenient expression in the initial momentum spa
Following similar arguments for initial point source
^r uC0&5A(2p\)d/Vpd(r2r0) ~the theory can be extende
to general initial states!, one can writem(t) as

m~r0 ,t !.
1

Vp
E dp0expF i

\
DS~p0 ,r0 ;t !G , ~5!

whereDS(p0 ,r0 ;t) is the action difference along the traje
tory starting at (r0 ,p0) for the two systemsH0 andH. In the
first-order classical perturbation theory,DS(p0 ,r0 ;t)
5e*0

t dt8V@r (t8)#, with V evaluated along the trajectory.
The averaged~over r0) fidelity can be separated into

mean-value part and a fluctuating part@11#, denoted by
M̄a(t) and M̄ f(t), respectively, M̄ (t)[um(t)u25M̄a(t)
1M̄ f(t), where

M̄a~ t ![um̄~ t !u2 with m̄~ t !5
1

VE dr0m~r0 ,t !. ~6!

From Eqs.~5! and ~6!, it is seen that the mean-value pa
M̄a(t) can be expressed in terms of the distributionP(DS)
of the action differenceDS,

M̄a~ t !.UE dDSeiDS/\P~DS!U2

, ~7!

where,

FIG. 1. Fidelity M̄ (t) as a function ofs2t for K050.4, e
'7.6731025, and N5N0,2N0,4N0,8N0 ~from bottom to top!

whereN054096. ~s50.05,0.1,0.2,0.4!. The FGR decay.e22.2s2t

is shown by the dashed line. Full circles represent the semiclas

valuesM̄a(t) at s50.4, computed with expression~7!. The numeri-

cally computed semiclassical valuesM̄ f(t) turn out to be negligible

so thatM̄ (t) is well approximated byM̄a(t), as clearly seen from
the figure ats50.4. Averages were performed over 400 initial po
sources, withu0 taken randomly in the interval@0,2p!. ~The same
decaying behaviors are observed for initial Gaussian wave pack!
02520
-

e.

P~DS!5
1

E dr0dp0

E dr0dp0d@DS2DS~p0 ,r0 ;t !#.

~8!

It is usually assumed that for chaotic systemsP(DS) is
close to a Gaussian with a variance@2e2K(E)t#, where
K(E)5*0

`dt^V@r (t)#V@(r (0)#& is the classical action diffu-

sion constant@3#. As a result, M̄a(t).e2Gt, where G
52s2K(E). At small s, the fluctuation is small compare
with the average value, because the phase on the right-h
side of Eq.~5! is proportional tos; then,M̄ (t).M̄a(t) has
the FGR decay.

Let us now consider a fixedr0, and divide the space of th
initial momentap0 into connected, disjoint subspaces, d
noted byAa , where eachAa is the largest possible subspa
such that the correspondence betweenp0 and the final posi-
tion r is one to one, i.e., differentp0 inside each single com
ponentAa gives different final positionsr . It is always pos-
sible to make such a division. The number of subspacesAa
is denoted byNa . Note also that the sizes ofAa decrease
exponentially with increasing timet. When p0 runs over a
subspaceAa , r may run over part of the configuration spac
denoted byVa . Note that, with this division of thep0 sub-
space, the trajectories starting atr0 are divided intoNa
groups and ‘‘near’’ trajectories typically belong to the sam
group.

The amplitudem(r0 ,t) in Eq. ~5! can now be written as
m(r0 ,t).(ama(r0 ,t), where

ma~r0 ,t !5
1

Vp
E

Va

drCsexpF i

\
DSs~r ,r0 ;t !G ~9!

with integration over the subspaceVa , in which the change
of variable p0→r within the subspacesAa has been done
and DSs(r ,r0 ;t) coincides withDS(p0 ,r0 ;t) for the same
trajectorys starting at (r0 ,p0) with p0PAa . M̄ f(t) is writ-
ten as

al

s.

FIG. 2. The exponential decay rateg vs perturbation strengths,

calculated from the best fit of lnM̄(t). Gaussian wave packets ar
taken as initial states. The solid curve shows the rateG.2.2s2 of
the FGR decay. The dashed horizonal lines correspond to
Lyapunov exponentsl50.62,0.96, and 1.32 forK050.4,1, and 2,
respectively. HereN5131 072.
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M̄ f~ t !.U(
a

ma fU2

with ma f5ma~r0 ,t !2
m̄~ t !

Na
.

~10!

When s is large enough, above a critical borders f ,
ma(r0 ,t) can be regarded as possessing random phase
thereforeM̄ f can be approximated by its diagonal part

M̄ f~ t !.(
a

uma f u2.(
a

uma~r0 ,t !u2

}E dr0(
a

U EVa

drCsexpS i

\
DSsDU2

, ~11!

where the second approximation is obtained by noticing
um̄(t)/Nau!umau at larges.

When the phase space is homogeneous with constant
~maximum! Lyapunov exponentl, as in the sawtooth map
the numberNs(r0 ,r ) of trajectories connecting two pointsr0
and r in the configuration space is approximatelyNs.Na
.elt @17#. The summation overa in Eq. ~11! gives a con-
tribution approximately proportional toNs . At t large
enough, the main time dependence ofu*Va

drCse
( i /\)DSsu is

given byCs}e2lt. Combining these results, it is seen that
s.s f , M̄ f(t) has the Lyapunov decay,M̄ f(t)}e2lt.

In order to have the Lyapunov decay forM̄ (t), the term
M̄a(t) must be small. To this end one needs to further
creases above a critical values r , so that the variance of th
phase ofm(r0 ,t) with respect tor0 will become so large tha
M̄a(t) is negligible.

The right panel of Fig. 3 gives an example ofM̄a(t)
'M̄f(t). This explains the fluctuation ofg versuss shown in
Fig. 2 atK052 ands,3. Figure 4 instead gives an examp
with s large enough (s.s r), so thatM̄a(t) is negligible
andM̄ (t).M̄ f(t).

FIG. 3. Comparison between the exactM̄ (t), its semiclassical

mean-value partM̄a , calculated by using Eqs.~5! and ~6!, and the

fluctuation partM̄ f5M̄ sc2M̄a , whereM̄ sc is the semiclassical ap
proximation to the fidelity, computed by the expression~5!. Here
N5131 072, K052, and s50.9 ~left panel!, s53 ~right panel!.

The exactM̄ (t) is in good agreement with its semiclassical appro

mationM̄ sc(t). The average is taken over 500 initial point sourc
02520
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The deviation from FGR decay observed in Figs. 1 an
is due to the deviation ofP(DS) from the Gaussian behavio
Indeed, when chaos in the underlying classical dynamic
strong enough (K0.1), correlations between nonoverlap
ping parts of a trajectory decay very rapidly and the dis
bution P(DS/e) reaches, in a relatively short time, th
Gaussian distribution. This is the case of Fig. 5 forK052,
where K(E)5p4/90.1.08 with G52K(E)s2.2.16s2, in
agreement with the numerical results in Ref.@12# and in Fig.
2. However, whenK0 is not sufficiently large, e.g.,K0
50.4, a considerable deviation ofP(DS/e) from the Gauss-
ian distribution appears for times comparable to the fide
decay times~Fig. 5!. According to Eq.~7!, this leads to de-
viations from the FGR decay as observed in Fig. 1. W
would like to draw the reader’s attention to the fact that
K0,1 the saw-tooth map, even though completely chao
possesses a structure of cantori which, in the quantum c
can act as perfect barriers to quantum motion thus leadin
localization of wave functions.

Notice that the deviation ofP(DS/e) from the Gaussian
distribution depends onK0 but not one or s. Therefore, by
increasings, the effect of this deviation becomes more a
more important, since the FGR exponential decay has a
cay rate proportional tos2 while the deviation from the
Gaussian remains unchanged. Therefore, for a given sys

-

.

FIG. 4. Similar to Fig. 3, forK051 ands56. At this larges,

M̄a(t) is negligible compared withM̄ f(t).

FIG. 5. DistributionP@(DS2^DS&)/e# of the classical action
differenceDS, at t510, calculated by taking randomly 107 initial
points in the phase space, where^DS&[et^V(u)&52p2et/6, with
an average over the phase space.
1-3
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there is a critical valuesd , below which the FGR decay i
obeyed with good accuracy and above which FGR bre
down. This case is illustrated in Fig. 2 for the caseK051,
which coincides with the well-known Arnold cat map, th
paradigmatic model of chaos. Here the distributionP(DS/e)
~at t510) is slightly different from the Gaussian distributio
and the decay rateg of fidelity deviates from the FGR deca
for s*0.3. In cases of weak classical chaos, the value ofsd
can be so small that FGR is never observed~e.g., the case
with K050.4). The left panel in Fig. 3 shows instead a ca
at K052 ands50.9, in whichM̄a(t) obeys the FGR deca
andM̄ f(t) is negligible.

To summarize, above the perturbative border, the fide
has a FGR decay fors,sd , while for s.s r , it has the
Lyapunov decay. In the intermediate region, forsd,s
,s f , the fidelity deviates from FGR and can decay ev
faster than Lyapunov. Fors f,s,s r , M̄a(t);M̄ f(t) and
the decay rate ofM̄ (t) fluctuates around the Lyapunov e
ponent. It may be useful to recall here the physical mean
of different borders. Abovesd , the distributionP(DS) de-
viates from the Gaussian and this induces deviations f
the expected FGR decay. Belows r , M̄a(t) is non-negligible
as compared toM̄ f(t) and this induces deviations from th
expected Lyapunov decay.

It may be interesting to remark that the relation betwe
the decomposition in two parts ofM̄ (t) here and that in Ref
R

e

s.
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@7# is the following. At s small enoughM̄ (t).M̄a(t)

.Mnd(t), with M̄ f(t) andMd(t) negligible; while ats large

enoughM̄ (t).M̄ f(t).Md(t), with M̄a(t) andMnd(t) neg-
ligible. In the intermediate regime ofs, in particular, in the
crossover from the FGR decay to the Lyapunov decay, th
may be a considerable difference between the two divisio

In this paper, by using the sawtooth map, we have de
onstrated that the fidelity decay in a generic chaotic sys
can have a very complex behavior. In particular, deviatio
from the Fermi-golden-rule~for weak chaos! and Lyapunov
decay have been discussed as well as the existence of pe
bation borders separating different regimes. It is our opin
that fidelity is an important quantity which characterizes t
stability of classical and quantum systems. It therefore
serves deeper analytical and numerical studies in orde
fully understand its behavior in different dynamical regime
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